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ABSTRACT

The kinetic potential of nucleation theory is extended to describe cloud droplet

growth processes that can lead to drizzle formation.  In this model drizzle formation is

identified as a statistical barrier crossing phenomenon that transforms cloud droplets to

much larger drizzle size with a rate dependent on turbulent diffusion, droplet collection

efficiency, and properties of the underlying cloud droplet size distribution.  Closed-form

expressions for the kinetic potential, critical drop volume, barrier height, and both steady-

state and transient barrier crossing drizzle rates are obtained in terms of measurable cloud

properties.  In an analogy with the theory of phase transformation, clouds are classified

into two regimes: an activated metastable regime, in which there is a significant barrier

and drizzle initiation resembles nucleation, and an unstable regime where kinetics

dominates analogous to the spinodal regime of phase transformation.  Observational

evidence, including the threshold behavior of drizzle formation and the well-known effect

that aerosols have on drizzle suppression, is shown to favor drizzle formation under

activated conditions (more like nucleation than spinodal decomposition) and under

transient conditions rather than steady-state.  These new applications of the kinetic

potential theory should lead to more accurate parameterizations of aerosol-cloud

interaction and improved algorithms  for weather forecasting and climate prediction.

PACS numbers:  05.40.-a, 92.60N, 82.60.N
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1. Introduction

Drizzle is an important cloud process that plays a crucial role in regulating the

Earth's energy balance and water cycle (Baker, 1997). Drizzle also effects climate

through its influence on cloud lifetime and cloud cover (Rosenfeld, 2000).   The

formation of drizzle consists of two steps: cloud formation, and the subsequent

autoconversion process whereby large cloud droplets collect smaller ones and become

embryonic raindrops.  The first process involves heterogeneous nucleation on aerosol

particles already present in the pre-cloud environment.  These particles, depending on

their number concentration and wetting properties, determine the cloud droplet number

concentration, ND .  Meteorological conditions including temperature and concentration

of water vapor also play an important role in determining number concentration through

their influence on the fraction of aerosol particles that activate to become cloud droplets

(Gillani et al., 1992).  Meteorological conditions also determine the liquid water fraction,

L cm cm= 3 3(liquid)/ (air), which is the product of ND  and average cloud droplet volume.

The present study is focused on the autoconversion process, whereby large droplets

form, fall through, and collect the smaller ones under warm rain conditions for which the

ice phase plays no role (Kessler, 1969; McGraw and Liu, 2003).   Understanding and

accurate parameterization of autoconversion is especially important for studies of cloud

lifetime and of the so-called second aerosol indirect effect:  namely, the observation that

higher cloud droplet number concentrations result in suppression of rain (Squires, 1958;

Albrecht, 1989).

The drizzle process has long been a puzzle in that the droplets would seem to take longer to

form than the lifetime of a typical rain cloud.  A key property of the new model is that it provides
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a barrier mechanism for limiting the number of very small (embryonic) drizzle drops.  This

reduces the subsequent competition for cloud water and thus the time required for measurable

drizzle formation.  Drizzle formation is identified as a statistical barrier crossing phenomenon

that transforms cloud droplets to drizzle size with a rate dependent on turbulent diffusion, droplet

collection efficiency, and properties of the size distribution.

To develop the present drizzle model we adapt methods traditionally used in homogeneous

nucleation theory even though autoconversion is not usually thought of as a nucleation process.

Closed-form expressions for the barrier profile, height, and critical droplet size are derived in

Sec. 2.  The steady-state rate of barrier crossing is obtained in Sec. 3.  The approach used here

follows the Becker-Döring type multistate kinetics calculations of homogeneous nucleation rate

but the underlying physics is different.  In particular the droplet surface tension, which is crucial

to nucleation, plays no explicit role in drizzle formation.  A new scaling theory is developed and

a universal, closed-form expression for the steady-state barrier crossing rate is obtained in terms

of two nondimensional variable groups that characterize properties of the cloud.  Transient

effects are analyzed in Sec. 4 using a matrix approach borrowed from time-dependent nucleation

theory and modified here to handle a sub-sampled lattice of discrete droplet sizes.  We conclude

with evidence that in most cases drizzle formation occurs under activated cloud  conditions (i.e.

with a significant barrier to the formation of large drops present) and under transient conditions

rather than steady-state.

2. Kinetic potential theory of drizzle formation

Consider a water droplet containing g molecules interacting and exchanging

material with its surrounding vapor.  Its kinetic potential (Wu, 1997) is define as:
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where βi s( )−1  is the rate of monomer addition to a drop containing i molecules, and γ i  is

the corresponding evaporation rate.  These fluxes are correlated with the equilibrium

population of drops of size g, n cmg( )−3 , through the detailed balance condition:

β γg g g gn n= + +1 1. (2.2)

Combining Eqs. 2.1 and 2.2 gives n n g gg g g g+ += = − + −1 1 1/ / exp{ [ ( ) ( )]}β γ Φ Φ  and thus

a Boltzmann-type proportionality for the equilibrium population: n gg ∝ −exp[ ( )]Φ .

These considerations support the idea that Eq. 2.1 defines a "potential", albeit one that is

defined solely in terms of kinetic coefficients.   In nucleation theory, ng is identified with

the constrained equilibrium cluster population (Abraham, 1974; Debenedetti and Reiss,

1998) and the kinetic potential is equivalent to the reduced thermodynamic potential,

W g kT( ) / , where T is temperature, k is the Boltzmann constant, and W g( ) is the

reversible work required to assemble a cluster of size g from the parent phase.

Nevertheless, the kinetic potential, defined solely in terms of rate constants, is more

general and can be applied even in the absence of a well-defined temperature,

thermodynamic potential, or equilibrium condition.

To apply the kinetic potential to drizzle formation, the growth of cloud droplets is

modeled as a sum of contributions from condensation and collection processes:

β β βg g
cond

g
coll= + (2.3)

together with an effective evaporation rate γ g
eff .  Collection refers to the volumetric gain

of a specified drop large enough to have a significant gravitational fall velocity so as to
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accrete the smaller, slower falling droplets, that typify the main population of the cloud.

Collection is thus an additional growth mechanism that, following the axiom "the rich get

richer", becomes available to those relatively few droplets that through chance

fluctuations reach fall velocity size.   For collector drops of radius less than 50µm  the

volumetric gain is approximated as (Long, 1974):

dv

dt
v L=κ 2 (2.4)

where v is the volume of the collector droplet, κ = ×1 1 1010.  ( )cm s− −3 1 , and L is the cloud

liquid water volume fraction.  In molecular units:

β κg
coll dg

dt v

dv

dt
v g L= = =1

1
1

2 (2.5)

where v1  is the volume per molecule in the liquid water phase.

The condensation rate includes effects due to turbulence fluctuations that in turn

cause fluctuations in the local supersaturation in the cloud.  If S denotes the saturation

ratio (equal to unity for a drop in equilibrium with its vapor) then fluctuations in S will

cause random sustained periods of droplet growth or evaporation depending on whether S

exceeds or is less than unity.  This is depicted schematically in Fig. 1.  In addition to

turbulence fluctuations there are complicated interactions between droplets in a cloud

due, for example, to the competition for available water vapor.  To include such

processes, we introduce an effect evaporation rate γ g
eff  determined from βg

cond  so as to

yield a specified cloud droplet distribution through detailed balance.  The collection term

(Eq. 2.5) applies to the much fewer number of large drops and is assumed to have

negligible effect on the background cloud droplet distribution.
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As in our initial study (McGraw and Liu, 2003) we assume an exponential cloud

droplet distribution:

n
N

a
g ag

D0 = −exp( / ) . (2.6)

ND  is the number of droplets per unit volume and a L v N v vD= =/( ) /1 1  , where v  is the

mean droplet volume, controls the falloff of the distribution.  The superscript refers to the

distribution of the typical-size cloud droplets in the absence of collection.  Substitution

into the detailed balance condition (Eq. 2.2) gives

n

n
ag

g

g
cond

g
eff

+

+

= = −1
0

0
1

1
β
γ

exp( / ). (2.7)

Although it is possible to carry a size dependence in β cond  through the calculations to

follow, we will assume for the present study that this quantity is independent of size:

β βcond condg( ) =  .   The second equality of Eq. 2.7 gives

γ βeff cond a= exp( / )1 (2.8)

showing that for this assumed droplet distribution γ eff  is also independent of size.  In

general the effective evaporation rate, γ g
eff , is determined from βg

cond  and the cloud

droplet distribution by the first equality of Eq. 2.7, and βg
coll  is determined using a model

collection kernel such as the Long kernel used to obtain Eq. 2.5.  Thus the turbulent

condensation rate remains as the sole adjustable parameter in the model.  Equations 2.5

and 2.8, together with an estimate for β cond , suffice to define all of the stepwise rate

coefficients needed to complete the present drizzle model.

There is an interesting analogy between the physics underlying γ eff , chosen here

to satisfy detailed balance while yielding a specified population of droplets, and the early



6

physics behind the 'spontaneous emission probability' used by Einstein in his derivation

of the Planck radiation law (Kittel, 1958) .  In that derivation the spontaneous emission

rate was obtained by the same arguments used here - detailed balance and a Boltzmann

population - long before details of the quantum theory of radiation, which permits a direct

calculation of this quantity, were understood.

The shape of the kinetic potential barrier can be obtained as follows:  Each

increment of g corresponds to the addition of one molecule - a very small step size on the

scale of cloud droplets!  Accordingly, the derivative of the potential, following Eqs. 2.1

and 2.3, is to excellent approximation:

d g

dg
g

g

cond
g
coll

eff

Φ( )
ln ln≈ −







= −

+



+

β
γ

β β
γ1

. (2.9a)

Defining

β
β

κ
β

g
coll

cond cond

v L
g cg= ≡1 2 2

the quantity in parenthesis becomes:

β β
γ

cond
g
coll

eff cg a
+

= + −( )exp( / )1 12 .

Because the term cg2  is always much less than unity, the logarithm in Eq. 2.9a can be

approximated to obtain:

d g

dg a
cg

a
cg

cond
g
coll

eff

Φ( )
ln ln= −

+





= − +( ) ≈ −
β β

γ
1

1
12 2. (2.9b)

Integration of this last result gives the kinetic potential:

Φ( )g
g

a
cg= − 1

3
3 (2.10a)
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where the constant of integration has been chosen such that the potential vanishes at g=0.

On substitution for the previously defined parameter groupings a and c, Eq. 2.10a

describes a barrier having a maximum height at the critical droplet size:

( *)g
N

L

cond
D2

2= β
κ

, (2.11a)

which satisfies the flux balance condition, β β γcond
g
coll eff+ =* .  The barrier height is:

        Φ Φ* ( *)
*= =g

g v

v

2
3

1 . (2.12a)

The lead term on the right hand side of Eq. 2.10a, Φ0 ( ) /g g a= , gives the kinetic

potential without collection and a Boltzmann population:

n gg
0 0∝ −exp[ ( )]Φ

in agreement with Eq. 2.6.  Its clear that in the absence of collection the critical droplet

size and barrier height are infinite and drizzle cannot occur.

For applications to atmospheric physics the kinetic potential is more conveniently

described in terms of the bulk parameters that characterize the cloud.  These include the

critical drop volume v v gc ≡ 1 *  (Eq. 2.11a):

v
v N

Lc

cond
D2 1

2

2= β
κ

(2.11b)

and barrier height

Φ* = 2
3

v

v
c . (2.12b)

The full potential takes the form:

Φ Φ
( )

*
( )z z z= −

2
3 3 (2.10b)



8

where z g g v vc= =/ * /  is the ratio of drop volume to the critical drop volume.  Figure 2

(top) shows the kinetic potential at several different barrier heights according to Eq.

2.10b.  The bottom panel of Fig. 2 shows a schematic depiction of the fluxes for

condensation, collection, and evaporation.  In the precritical droplet regime the reverse

flux (evaporation) exceeds the sum of the forward fluxes due to condensation and

collection and the barrier can only be surmounted due to favorable fluctuations in droplet

size. This flux dominance is reversed in the postcritical, or collection, regime (i.e., the

forward fluxes dominate) with the result that growth is favored in this regime.

It is instructive to compare Eq. 2.10b with the reduced thermodynamic barrier

profile of classical nucleation theory (CNT).  There Φ ΦCNT CNTz z z( ) * ( )/= −3 22 3  where

z g g CNT= / *  is the ratio of the cluster size to the critical cluster size of the classical

theory (Wu, 1997; McGraw, 2001).  Indicative of fundamental differences in the

underlying physics, the scaled kinetic potential for drizzle has a distinctly different shape

(sharper and less rounded near the maximum) than the barrier of classical nucleation

theory.

The remaining molecular grouping, β condv1
2  (cm s6 1− ), appearing in Eq. 2.11b, has

an important physical interpretation:   Molecular number diffusion along the g-coordinate

is given by the diffusion coefficient (Chandrasekhar, 1954; McGraw, 2001)

D nlg
cond= ≈1

2
2 β (2.13)

where n is the total jump frequency (forward and backward jumps included) and l is the

jump distance (equal to unity for single-molecular jumps).  The last equality loses the

factor of 1/2 due to the fact that β cond  gives the frequency of only the forward jumps.  By
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analogy we see that β condv1
2  is the (turbulent) diffusion coefficient along the volume

coordinate - with jump size v1 .  On the larger scale of cloud droplet volumes it is natural

to represent processes using a sub-sampled lattice of droplet sizes with renormalized

transition rates between adjacent sizes defined so that physical quantities such as the

diffusion constant are invariant to the lattice spacing (McGraw and Liu, 2003).  For

example, for a lattice spacing vstep where v v vstep c1 << <<  and rescaled coordinate

d v vstep= / , we obtain step-invariant diffusion along the volume coordinate:

D v vv d
cond

step
cond= =β β2

1
2 (2.14a)

 provided

      β βd
cond cond

stepv v= ( / )1
2 2  (2.14b)

is used for the (renormalized) turbulent condensation rate.  This sub-sampled lattice plays

an essential role in the transient drizzle rate calculations of Sec. 4.

A typical range for the unknown model parameter Dv , which depends on β cond

(also unknown), can be estimated as follows:  Consider the time, t1% , it takes to add

through Brownian-like diffusion along the volume coordinate, a sufficient volume,

∆v m≈ 127 3µ , to bring about a 1% change in a typical cloud drop radius from 10 to

10.1µm .  The mean square displacement due to diffusion along the volume coordinate is

σ v vD t2 2=  after a time t.  Equating σ v and ∆v  gives:

t
v

Dv
1

2

2%

( )= ∆
. (2.15a)
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Equivalently, Dv  could be set in a seemingly less arbitrary way by considering the time it

takes for droplets to gain or lose volumes comparable to the average cloud droplet

volume:

t
L

D Nv
v D

=
2

22
, (2.15b)

which is a measure of the overall relaxation time of the cloud droplet distribution.   The

disadvantages of setting Dv  using Eq. 2.15b are its dependencies on both L and ND   and

the fact that a full turbulence simulation over the considerably longer time scale tv  will

be much more difficult to carry out for comparison with the present Brownian model.

Following (McGraw and Liu, 2003), we estimate Dv  (or β cond ) through the assignment of

a reasonable range of values to t1% :

D m s t sv
cond( ) . . / ( )%µ β6 1 22 3

18 94 10 8 05 10− −≈ × ≈ × (2.16)

We will generally choose values of t1%  in the range 0.1 - 10s.  Longer times would not

allow for significant fluctuations in drop size over the lifetime of a typical cloud and

shorter times would imply growth rates faster than are likely to occur under the typical

range of supersaturation found in clouds.  Figure 3a shows a Monte-Carlo simulation of

Brownian fluctuations in droplet radius for t s1 0 1% .=  and a typical cloud particle size in

the pre-collection regime.  The method of simulation has been described previously in the

context of nucleation clusters (McGraw, 2001) and cloud droplets (McGraw and Liu,

2003).  Figure 3b shows the results of two different simulations beginning with an initial

particle radius of 40 µm in the collection regime.  Here fluctuations are evident even in

the presence of net steady growth from drift motion in the downward sloping part of the

kinetic potential in the collection regime.  The solid curve is the result of the



11

deterministic (fluctuations averaged out) calculation of the growth rate  described in

Appendix A.

3.  Steady-state barrier crossing rate

The present derivation of the steady-state drizzle rate follows closely the Becker-

Döring molecular kinetics approach of classical nucleation theory (Abraham, 1974) with

important differences due to boundary conditions, barrier profile, and scale.  It is again

convenient to begin with the molecular-level description, reporting final results in terms

of relevant parameters on the cloud physics scale.

Let fg  denote the population of clusters (droplets) of size g.  The net flux for

conversion from g to g+1 is:

J f f n
f

n

f

ng g g g g g g g
g

g

g

g
, + + +

+

+

= − = −






1 1 1

1

1

β γ β (3.1)

where the last equality follows Eq. 2.2.  The steady-state current (Jss )  is constant along

the growth sequence and summation of Eqs. 3.1 gives:

J
n

f

n

f

nss
g gg

1
β=

∑






= −

gmin

gmax
gmin

gmin

gmax

gmax

. (3.2)

In nucleation theory the ratios on the right-hand-side in gmin  and gmax  are set to unity and

zero, respectively, as "monomer" and Szilard boundary conditions.  The summation on

the left is dominated by clusters near the critical size (where ng assumes its smallest

values) with the result that the computed flux is not terribly sensitive to the placement of

the boundaries provided g g gmin max*<< <<  so as to include a wide range of terms about
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the critical size.  In the drizzle model we set gmin  in the range of the smallest cloud

droplet size (1 1<< <<g v vmin / ).  In this limit Eq. 2.6 reduces to:

n
N

a

v N

L
D D

gmin ≈ = 1
2

. (3.3)

and for the lower boundary f ngmin gmin/ = 1.  This boundary condition is assumed to hold

even with collection:  Small droplets are, of course, consumed during the collection

process, just as monomer is consumed during nucleation and this can prevent the

occurrence of a stable steady state (McGraw and Saunders, 1984).  However, like

nucleation theory, the present drizzle model is limited to the onset regime and depletion

effects are beyond its scope.  Candidate approaches to future treatments of the later stages

of drizzle formation are briefly discussed in Sec. 5.

A natural placement for the Szilard boundary condition, f ngmax gmax/ = 0 , is to set

g gmax *= 3 .  This size is sufficiently beyond g * and at the zero potential crossing (see

Eq. 2.10b): Φ( )maxg = 0.  With these boundary conditions in place, the right-hand-side of

Eq. 3.2 is unity yielding for the steady-state crossing rate:

J
n

v N

L gss
g gg

D

gg

=






=

−





=

−

=

−

∑ ∑1 1
1

1
2

1

β βgmin

gmax

gmin

gmax

exp[ ( )]Φ
. (3.4)

In the last equality the condition Φ( )ming ≈ 0  has been used.  The βg  appearing in Eq. 3.4

is the total forward growth rate, which as already noted is dominated by the condensation

rate.  This is true even for clusters many times critical size.  Thus we can neglect the

collection term in the kinetic prefactor [it is of course included in Φ( )g ] and make the

excellent approximation:
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β βg
cond≈ . (3.5)

This and replacement of the discrete sum by an integration simplifies the final result:

     J
v N

L
g dg Lv N z dzss

cond
D

g

g

c D= 



 = 



∫ ∫

− −β κ1
2 1

0

3
1

exp[ ( )] exp[ ( )]
min

max Φ Φ . (3.6)

To obtain the last equality, substitute for the critical drop volume using Eq. 2.11b and

used the integration limits z g gmin min / *= ≈ 0 and z g gmax max / *= = 3 .

The integral of Eq. 3.6 is now approximated using the method of steepest descent

(Abraham, 1974; Wu, 1997):  First, expand the potential in a Taylor series about its

maximum:

Φ Φ Φ( ) * * ( ) {( ) }z z O z= − − + −3
2

1 12 3 . (3.7)

Substitution into Eq. 3.6 retaining through the quadratic term gives a Gaussian integral

that is readily evaluated in closed form.  The result is

exp[ ( )]
*

exp( *)Φ Φ ΦG z dz
−∞

∞ −

∫( ) ≈ −
1 3

2π
(3.8)

where the subscripted kinetic potential denotes the Gaussian approximation.  Provided

the integrand is sharply peaked near the critical size, the limits of integration can be

replaced by zmin  and zmax , as in Eq. 3.6, with insignificant error.  The final result for the

barrier crossing rate ( )cm s− −3 1  is:

J Lv N n Zss c D
cond

g≈ − = −κ
π

β3
2
Φ Φ Φ*

exp( *) exp( *)
min

. (3.9)



14

In classical nucleation theory a term similar to:

Z
g

= 1 3
2*

*Φ
π

(3.10)

is known as the Zeldovich factor (Abraham, 1974) and corrects for barrier re-crossing.

Not surprisingly, its  precise form in nucleation theory differs from the result obtained

here.

Equation 3.9 provides a convenient analytic expression that is in excellent

agreement with the full Becker-Döring integration of Eq. 3.6 for the steady-state drizzle

rate in the activated cloud regime (see below).  Figure 4 shows rates predicted from Eq.

3.9 as a function of droplet concentration for different values of L and t1%.  Associated

with each dashed curve from Eq. 3.9 is a solid curve showing the corresponding result

obtained from numerical integration of Eq. 3.6 without the Gaussian approximation.

Each family of curves has identical shape on the log-log scale and can be compressed to a

single universal curve in appropriately scaled units.  The relevant dimensionless groups

are:

ε
κ

≡ = 





D N

L

v

v
v D c

3

4

2

(3.11a)

with Dv  in cgs units, and

ω
κ

≡ J

L
ss
2 (3.11b)

in terms of which Eq. 3.9 takes the universal form:

ω
π

ε ε= −





1 2
3

3 4 1 2/ /exp . (3.12)

Figure 5 (top panel) shows the universal curves from Eq. 3.12 (dashed curve) and from

numerical integration of Eq. 3.6 (solid curve).  That the latter is also scaleable follows
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because the integral depends only on reduced barrier height.  The bottom panel shows the

reduced barrier height as a function of the logarithm of ε.

Conditions at the maximum value of the scaled drizzle rate {ε = ( / )3 2 4 ,

Φ* /= 3 2 } separate the kinetically controlled and activated drizzle formation regimes.

Returning to the top panel of Fig. 5 it is seen that the discrepancy between Eq. 3.12 and

the exact integration appears as one enters the kinetic regime.  This is due to failure of the

Gaussian approximation used in the derivation of Eq. 3.9 (the integrand is no longer

sharply peaked near the critical size).  On the other hand, the figures show the

approximation working very well in the activated regime.  Figure 6 shows a number of

properties predicted by the model for t s1 0 1% .= .  The solid contours are curves of

constant nucleation rate obtained from the full integration of Eq. 3.6 so as to accurately

describe conditions in the kinetic regime.  Dashed contour lines are lines of constant

radius determined from the average cloud droplet volume, v L ND= / .  The thick line

marks the separation boundary, at ε = ( / )3 2 4 , between the kinetic and activated regimes.

Above this boundary (in the kinetic regime) the rate is seen to depend only on drop

number, increasing as ND  is increased and, unlike the situation below the boundary, there

is no sharp threshold effect.  The kinetic regime is analogous to the spinodal regime of

phase transformation in that the process is no longer activated and kinetics dominates.

Strictly speaking the barrier vanishes at a true spinodal as the system passes from a

thermodynamically stable state to an unstable one (Oxtoby and Evans, 1988), whereas in

a cloud the transition occurs at Φ* /= 3 2 .  The distinction is inconsequential, however,

in that this small value of Φ*  corresponds, in a true thermodynamic system, to a barrier
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height of only 3/2 kT (Appendix A).  Thus neither barrier height nor critical droplet

volume play significant roles in the kinetic regime.

At larger values of ε, the rate is controlled mainly by the barrier height.  In this

activated regime the cloud can be thought of as metastable (as opposed to unstable) and

the analogy between drizzle formation and nucleation most applies.  Here increases in

droplet concentration result in higher barriers and sharp, threshold-like reductions in

drizzle rate.  This behavior, opposite to the trend found in the kinetic regime, is consistent

with the well-known effect that aerosols, which increase cloud droplet concentration,

have on drizzle suppression (Albrecht, 1989; Rosenfeld, 2000).  This behavior is also

consistent with the Kessler-type parameterizations of the autoconversion process

(Kessler, 1969; Liu and Daum, 2004), which prescribe both a critical radius, as an

empirical constant, and a threshold condition such that there is no autoconversion when a

characteristic radius is less than the prescribed critical radius.   The kinetic potential

theory provides an analytic expression (Eq. 2.11b) for predicting the critical radius in

autoconversion parameterizations (Liu et al., 2004).  These considerations point to

observational evidence as well as to empirical model support for drizzle formation in the

activated cloud regime.
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4. Transient drizzle formation

The matrix formulation of Shugart and Reiss, developed to describe transient

effects in nucleation (Shugart and Reiss, 1976), is a powerfull and elegant kinetic

approach that can also applied to the problem of transient drizzle formation.  Here we

give a more complete description of the method than was possible in (McGraw and Liu,

2003).  Several modifications of the original formulation including scaling and sampling

of the size coordinate, and renormalization of the corresponding growth/evaporation

rates, are introduced to extend the method from the molecular cluster scale of nucleation

to the macroscopic scale of clouds and drizzle drop formation.

4.1 Matrix formulation:

The effectively continuous population of droplet sizes is first discretized along the

volume coordinate in order that the rate matrix, whose dimension will equal the number

of sampled droplet sizes or lattice grid points, d G= 0 1 2, , ,.... , where d v vstep= /  in the

case of equal spacing, be of manageable size.  Truncating as before at v vcmax = 3  gives

v v Gstep c= 3 / .   The cloud droplet distribution is also defined on the lattice.  From Eq.

2.6:

n
v N

L
dd

step D0
2

0= −exp[ ( )]Φ (4.1)

where Φ0  is the kinetic potential in the absence of collection, as defined in Sec. 2, and

the shortened notation Φ Φ0 0( ) ( )d d vstep≡ ×  is used.  In the limit of a very fine grid,

N nD d
d

G

=
=
∑ 0

0

.  For coarser grids the normalization is improved using half-integer values of
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d: d d→ +1 2/  in the equations below.  Evolution of the drop population, fd , follows the

correspondingly sub-sampled version of Eq. 3.1:

df

dt
J J f

n

n
f

n

n
fd

d d d d vstep d vstep vstep
d

d
d vstep

d

d
d= − = − +







+− + −
−

+
+1 1 1

1

1
1, , β β β β  (4.2a)

where β βvstep
cond

stepv v≡ ( / )1
2 2  is the renormalized condensation rate from Eq. 2.14b.  For a

constant step size this is also constant.   For the smallest droplets the boundary condition

f n0 0 1/ =  gives:

     J n
f

nvstep0 1 0
1

1

1, = −






β . (4.2b)

where the constrained smallest cluster population, n0, is approximated using n n0 0
0≈

from Eq. 4.1.

Equations 4.2 are conveniently collected in matrix-vector form:

d

dt

f
Kf a= + (4.3)

with f T = −[ , ,..., , ]f f f fG G1 2 1  where f T  denotes the transpose of f .  The growth sequence

is terminated by placing the Szilard boundary at G +1: f nG G+ + =1 1 0/ .  The vector a

accounts for the small-drop boundary condition (Eq. 4.2b).  Its only nonzero element is

a n nvstep vstep1 0 0
0= ≈β β .  Elements of the tridiagonal matrix K  follow inspection of Eqs.

4.2:

K

K n n

K n n

d d vstep

d d vstep vstep d d

d d vstep d d

, −

−

+ +

=

= − − ( )
= ( )

1

1

1 1

β

β β

β
,

,

/

/

(4.4)

To obtain the steady-state droplet population let

f g gSS T= + (4.5)
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where gSS  and gT  are the steady state and transient components, respectively, of f .

Substitution into Eq. 4.3 gives

    d

dt

g
a Kg KgT

SS T= + + . (4.6)

The requirement that the transient solution vanish at long time implies a Kg 0SS+ = ,

yielding the steady-state droplet population through matrix inversion:

g K aSS
1= − − (4.7)

As there is no return flux from drops of size d G= +1, due to the boundary condition, the

steady-state drizzle rate is simply equal to the forward flux:

Jss vstep G= β ( )gss (4.8)

where ( ) ( )gss G Gf= ∞  is the last component of   
r
gss , which equals the last component of f

at t = ∞.  The rate from Eq. 4.8 is equivalent to the Becker-Döring result (Eq. 3.2), but

with summation here over the coarser lattice grid.

The combination of Eqs. 4.6 and 4.7 yields an equation for the transient solution:

d

dt

g
KgT

T= . (4.9)

The standard approach to solving Eq. 4.9 (Shugard and Reiss, 1976; Schelling and Reiss,

1981) involves first bringing K  to Hermitian form.  Inspection of Eqs. 4.4 for the

elements of K  reveals that although this matrix is nonsymmetric, its off-diagonal

elements are related through detailed balance.  Rewriting the nucleation current, Jd d, +1,

gives

J K f K fd d d d d d d d, , ,+ + + += −1 1 1 1
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which, under conditions of constrained equilibrium (Jd d, + =1 0 ) gives the detailed balance

condition:

K K n n K d dd d d d d d d d+ + + += ( ) = − +[ ]1 1 1 1 1, , ,/ exp ( ) ( )Φ Φ (4.10)

where the shortened notation Φ Φ( ) ( )d d vstep≡ ×  is used.  Equation 4.10 provides the

basis for transforming K  to Hermitian form.  The square of the matrix of

transformation,D, is diagonal with elements:

D d kTd d, exp[ ( ) / ]= Φ . (4.11)

To demonstrate Hermiticity, consider the following matrix product:

H D KD1/2 1/2= − − (4.12)

where D1/2  is the square root of D and the minus sign is used to give positive eigenvalues

for H.  Like K , H is tridiagonal with real elements.  For HT, the transpose of H,

H D KD D K D

D DKD D D KD H

T 1/2 1/2 T 1/2 T 1/2

1/2 1 1/2 1/2 1/2

= − = −

= − = − =

− −

− − −

( )

     

showing that H is Hermitian.  The third equality uses the detailed balance condition in

the form:

K DKDT 1= − (4.13)

which follows Eqs. 4.10 and 4.11.

In the frame of the transformed matrix H, Eq. 4.9 becomes

d

dt

ψ ψΤ = −H T (4.14)

where

ψ T
1/2

TD g= . (4.15)

The formal solution to Eq. 4.14 is:
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ψ ψλT
1

TV D V( ) exp( ) ( )t t= − − 0 (4.16)

where V  diagonalizes H (specifically, the columns of V  are comprised of the

eigenvectors of H):

V HV D1− = λ . (4.17)

Dλ  is the diagonal matrix having the corresponding eigenvalues of H as elements

( )Dλ λii i= .

With these definitions, Eq. 4.16 can be put into more explicit form.  In Dirac notation:

ψ ψ λT TV V( ) ( ) exp( )t ti i
i

i= −∑ 0 (4.18)

showing the dependence of the transient  solution on the eigenvalues and eigenvectors of

H.  The transient droplet distribution is recovered form ψ T( )t  using Eqs. 4.5 and 4.15:

  

r r
f g Dss T( ) ( )/t t= + −1 2 ψ (4.19)

Finally, because there is no contribution to the net flux from evaporation of drops of size

d=G+1, the drizzle rate, defined here as the flux to the Szilard boundary is:

J t f t J G G V t Vvstep G SS vstep j
j

j j G( ) ( ) ( , ) ( ) exp( )( )/= = + −− ∑β β ψ λD 1 2 0 (4.20)

where D− =1 2/ ( , )G G nG  and ( )Vj G  is the last component of eigenvector Vj .

4.2 Calculations

To most efficiently implement Eq. 4.20 it is useful to employ the scaled z-

coordinate in terms of which the barrier again depends on only a single parameter, ε  or

barrier height (Φ* /= 2 3ε ).  This enables the transient drizzle rates to be mapped to a

one-parameter family of curves characterized by ε .
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For the calculations that follow we set vstep such the number of sampled droplets

G (equal to the dimensionality H) is 100:  vstep = 3 100 vc / .  Results are presented in

terms of the transient rate divided by the steady-state rate:

J t

J

f t

f

G G V t V

JSS

G

G

vstep j
j

j j G

SS

( ) ( )
( )

( , ) ( ) exp( )( )/

=
∞

= +
−− ∑

1

01 2β ψ λD

(4.21)

Further scaling is accomplished by defining the dimensionless time t̃ tvstep= β  and

dividing concentrations by the concentration of smallest droplets: n n0 0
0≈ .  In these units,

the elements K , for example, depend only on ε , which determines the population ratios

appearing in Eqs. 4.4 or 4.10.  The same holds for the reduced nucleation rate (left hand

side of Eq. 4.21).  Original units are easily restored at the end of a calculation by

multiplying scaled rates by βvstepn0 .  For the initial conditions we set the population of

clusters to follow Eq. 4.1, which is the cloud droplet distribution in the absence of

collection and there is no current.  At t =0 collection is turned on and the population

evolves according to Eq. 4.18, and current according to Eq. 4.21.

Figure 7 shows the reduced transient rate, J t Jss( ) / , in reduced time units for

different values of ε .  The calculations are described in Appendix B.  Results from the

full matrix calculations of Eq. 4.21 (solid curves in Fig. 7) are compared with those

obtained using a simple lognormal parameterization provided in Appendix B (dashed

curves).  The parameterization gives excellent results for higher values of the barrier

heigh and continues to work reasonably well throughout the activated regime.

Unfortunately it is the important short time behavior for which the parameterization first

has difficulty - beginning at about Φ* ≈ 5  as the barrier height is reduced - forcing one to
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return to Eq. 4.21 if very accurate prediction of the early onset of drizzle formation is

desired in this regime.  Similar difficulties arise when the lognormal parameterization is

used to approximate transient rates in nucleation theory (Wu, 1997).

From the results of Fig. 7 it is seen that the onset of drizzle formation will

typically occur on time scales that are fractionally much shorter than those required to

reach steady state.  Thus, when drizzle occurs, it will likely be initiated under transient

conditions.  This is illustrated further in Fig. 8 which shows the conditions required to

reach transient drizzle onset rates, J t( ) , of 10 5−  to 10 6− cm s− −3 1, or 1-10 drops per cubic

meter of cloud per second.   These are estimated rates required for significant drizzle

formation assuming a radius of 100µm for the collected droplets [McGraw and Liu,

2003].  The figure shows the conditions required to obtain these rates within time periods

of 10 min, 20 min, and 1 hr following the turning on of collection in the model at t =0.

The steady-state contours for J cm s( )∞ = − − −10 5 3 1and  10 6− cm s− −3 1  from Fig. 6 are also

reproduced (solid curves in Fig. 8).  It is seen that as the allowed onset time for

observable drizzle formation is reduced, the contours shift towards larger values of ε ;

conditions that also favor a higher steady-state drizzle rate.  In the limit of an infinite

onset period, the transient contours coincide with those for the same rate at steady state.

Figure 9 shows the collection time, defined here as the time required for a newly-formed

drizzle droplet to reach a radius of 50µm, which is the largest size for which Eq. 2.4

applies (Long, 1974).  The calculation is described in Appendix A.  The collection time

added to the drizzle formation time (Fig. 8) gives the total time required to form the

corresponding flux of 50µm drizzle drops.

5. Summary and discussion



24

A new description of the onset of drizzle formation has been developed using kinetic

potential theory.   Drizzle is described quantitatively as an activated barrier crossing

phenomenon using methods borrowed from homogeneous nucleation theory.  Two types of

calculations were presented:  (1) matrix-eigenvalue calculations of the kinetics of steady-state

and transient drizzle formation, and (2) comparisons of these with results from simple analytic

expressions and parameterizations valid in the all-important activated cloud regime.  This ability

to yield analytic expressions for the steady-state drizzle rate, activation barrier height, and

critical droplet size is an especially attractive feature of the kinetic potential theory.  More work

remains to be done, especially in the post-drizzle-initiation regime, but the new methods should

lead to improved parameterizations for aerosol-cloud interactions and subsequent improvements

to weather forecast and climate models.

Modeling of the later stages of drizzle formation will require relaxing both of the

nucleation boundary conditions employed in Secs. 3 and 4.  Candidate approaches include

method-of-moments (MOM) type calculations in which lower-order moments of the combined

cloud and drizzle droplet distributions are tracked in time; similar to the description of vapor

depletion effects through the integrated treatment of nucleation and growth processes during gas

to particle conversion (McGraw and Saunders, 1984).  Closure of the moment evolution

equations can be obtained using quadrature methods developed for aerosol dynamics simulation

(McGraw and Wright, 2003).  Another approach, which would yield a sampled representation of

the drizzle droplet spectrum, instead of moments, is to simply extend the range of the matrix

calculations of Sec. 4 using a sampling grid that extends beyond the Szilard boundary so as to

include much larger droplet sizes.  Both approaches are good candidates for future extensions of

the present threshold model.
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Of all of the cloud processes successfully integrated into the kinetic potential

theory of drizzle formation, the role of turbulence remains the least understood.  At its

present stage of development, the model requires that the turbulence parameter, β cond , the

underlying cloud droplet distribution, and the collection rate constant, κ , each be

prescribed.  Accordingly the present model is incapable of addressing likely correlations

between β cond  and the cloud droplet distribution, and between β cond  and κ . Once such

correlations are understood and incorporated, the model should provide a much clearer

understanding of how cloud turbulence fluctuations couple with drizzle formation.

The analysis of Sec. 3 has shown the possibility for two distinct regimes of drizzle

formation: a kinetically-controlled regime and an activated regime.  It is the activated

regime of drizzle formation that is best supported by observations.  These include: (1) the

negative correlation seen between cloud droplet concentration and drizzle rate, and (2)

the general observation, built into current state-ot-the-art empirical parameterizations,

that drizzle formation is a threshold phenomenon (Kessler, 1969; Liu and Daum, 2004).

Because cloud droplets form on aerosol particles, the negative correlation between

droplet concentration and drizzle rate is manfested through the well-known effect that

aerosols have on drizzle suppression (Albrecht, 1989; Rosenfeld, 2000).  The present

calculations are fully consistent with both observations in the activated regime while

predicting very different behavior in the kinetic regime.  This raises an interesting

paradox for the model: how can the existence of a barrier to drizzle actually serve to

promote drizzle formation?   While a complete answer requires including effects from

cloud droplet depletion during collection, considerable insight is available from results

already obtained:  The barrier regulates the rate at which cloud droplets can enter the



26

collection regime.  Out of the millions of cloud droplets present in a cubic meter of cloud,

only 1-10 (per second) are needed to provide an observable drizzle rate.  The barrier

simply serves to limit the rate at which collection-size droplets can form so that such

small frequencies of crossing events can be realized.  Droplets that do manage through

chance fluctuations to cross the barrier will experience rapid growth to fallout size before

the effects of depletion set in.  If instead the process was activationless, so that many

drops of collection size could be initiated at the same time, the subsequent competition

for cloud water would likely prevent any of them from reaching large size.

There is another property of depletion that will tend to favor drizzle formation in

the activated regime:  To first order the collection process depends on the size of the

collecting drop but is independent of the smaller cloud droplet size (Eq. 2.4). Thus we

might expect that during depletion, both ND  and L will be  reduced at a proportional rate

along the direction of the dashed contour lines of constant averge droplet volume shown

in Fig. 6.  A comparison of the slopes of the solid and dashed contours in Fig. 6 implies a

threshold reduction in the drizzle rate with proportional depletion of ND  and L.  Under

these conditions, the depletion of cloud droplets through collection will exert an

inhibitory feedback control that quenches drizzle formation in much the same way that

vapor depletion quenches nucleation, often resulting in oscillatory rates of nucleation and

growth (McGraw and Saunders, 1984).   While the full dynamics of the later stages of

drizzle remain to be incorporated in the model, the preceding arguments suggest that

depletion will act as a nonlinear feedback mechanism for keeping cloud conditions within

the activated regime and close to or below the threshold for drizzle formation.
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This paper has developed the kinetic potential theory and extended its range of

application beyond its origins in nucleation theory to a system, drizzle formation, for

which neither temperature nor thermodynamic potential are well defined.  These

advances will open the door to applications of the kinetic potential theory to other areas

of statistical physics, applied mathematics, and perhaps economics, where phenomena

that can be modeled as sequences of transition rates or transition probabilities arise.
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Appendix A:  Fluctuations and growth in the collection regime

From Eq. 2.10b:

Φ Φ
( )

*
v

v

v

v

v

v

v

v

v

v

vc c

c

c c

= −


















= −
















2

3
1
3

3
3 3

(A.1)

and

d

dv v

v

vc

Φ = −


















1
1

2

(A.2)

This last result gives the gradient of the kinetic potential along the droplet volume

coordinate.  The gradient is proportional to force (but in the opposite direction) and

should therefore be proportional to the velocity along the volume coordinate in a

Brownian fluctuation model:

dv

dt
F= η  (A.3)

where η  is mobility.  Long's collection kernel requires that in the collection limit the

growth velocity be given by Eq. 2.4:

dv

dt
Lv=κ 2 (A.4)

It is interesting to explore the equivalence of Eqs. A.3 and A.4 and determine the

mobility.

In the collection limit (v vc>> ) Eq. A.2 is approximated as:

d

dv v

v

v

L

v
v

c
cond

Φ ≈ −






= −1
2

1
2

2κ
β

(A.5)
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where the last equality follows substitution from Eq. 2.11b for vc
2.   Together Eqs. A.4

and A. 5 give a linear response relation between the potential gradient and the rate of

growth:

dv

dt
v

d

dv
D

d

dv
Lvcond

v= − = − =β κ1
2 2Φ Φ

(A.6)

This analysis shows consistency between the collection growth law, the shape of the

kinetic potential in the collection regime, and the turbulence fluctuations in evaporation

and gowth embodied in the diffusion parameter Dv .

It is interesting to notice that Eq. A.6 has the form one would expect by analogy

with thermodynamic fluctuation theory applied to systems which, unlike the drizzle

model, have well defined temperature (T) and thermodynamic potential (W).  To

illustrate, let x denote a general coordinate and set Φ( ) ( ) /x W x kT= .  The analogous

relation to Eq. A.6 is:

dx

dt
F

dW x

dx
kT

d x

dx
D

d x

dx
= = − = − = −η η η( ) ( ) ( )Φ Φ

. (A.7)

In the first equality F  is force and η  is mobility.  The fourth equality is the well-known

Einstein relation between diffusion and mobility (Boon and Yip, 1991):

D kT= η . (A.8)

The preceding analysis shows that Eq.A.6 is consistent with the thermodynamic result

despite the fact that in its derivation neither temperature nor thermodynamic potential

have been defined.  The preceding argument also demonstrates the validy of equating

β condv1
2  with the diffusion coefficient Dv .  Nevertheless an important difference remains:

in the drizzle model fluctuations occur on the energy scale of turbulence - not kT.
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The deterministic growth of freshly nucleated particles, once they cross the

Szilard boundary at v vc= 3 , is described by Eq. A. 2

dv

dt
D

d

dv
D

v

v

v
Lv

D

vv v
c

v= − = − −


















= −Φ 1
1

2

2κ . (A.9)

The last equality follows Eq. A.5.  This is a first-order nonlinear equation of a fairly

standard form whose solution is:

v t
v

d Lv t
c

c

( )
tanh( )

=
−κ

.                       (A.10a)

The constant of integration is obtained from the initial condition, and is for particles

beginning their growth at the Szilard boundary, v vc( )0 3=  :

d = ≈−tanh ( / ) .1 1 3 0 658 .           (A.10b)

The time required for droplets to grow from the Szilard boundary to 50µm radius (the

limit of the collection kernel of Eq. 2.4) is accordingly:

t
d v v

Lv
c

c
50

1
50= − −tanh ( / )

κ
(A.11)

where v50  is the volume of a 50µm radius drop.  This added to the drizzle formation time

gives the total time required to form a flux of 50µm radius drops.
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Appendix B:  A parameterization for the transient barrier crossing rate

As found in nucleation theory, the approach to steady state is described with good

accuracy in terms of the temporal moments (Wu, 1997):

M t J t J dt
k

t p t dt
kk

k
ss

k k= −[ ] =
+

≡
+

∞ +∞
+∫ ∫1

1
1 10

1

0

1( ) / ( )
µ

(B.1)

where and J t( )  and Jss  are, respectively, the transient and steady-state drizzle rates and

µk  is the kth moment of p t( ) :

p t
J

d

dt
J t

ss

( ) ( )= 1
. (B.2)

M0 1= µ  is the lag time for drizzle formation.  The second equality of Eq. B.1 follows an

integration by parts.

In the case of the nucleation time lag it has been found that a log-normal

distribution can give a good approximation toP t( )  yielding a parameterization for J t( )  in

terms of lowest -order moments (Wu, 1997).  A similar result is found for the drizzle

rate provided the barrier height Φ *  is not too small.  From Eqs. B. 2, 4.8 and 4.21 we

obtain:

P t
n

g
V t VG

ss G
j

j
j j j G( )

( )
( ) exp( )( )= − −∑ ψ λ λ0 (B.3)

which on integration over t yields the moments

µ ψ
λk

G

ss G
j

j j
k j G

n

g
k V V= − ∑( )
! ( ) ( )0

1
(B.4)

Approximating P t( )  by the normalized log-normal distribution:

f t ts t m sLN ( ) ( ) exp[ (ln ) / ]= − −−2 21 2 2π , (B.5)

which has the moments
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t f t km ksk
LN0

2 2
∞

∫ = +( ) exp[ ( ) / ], (B.6)

enables the log-normal parameters m and s2  to be expressed in terms of moments:
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1
4

1

0
4

ln ln
µ
µ

(B.7b)

In reduced time units t̃ tvstep= β   the transient profile depends only on the non-

dimensional parameter ε  of Sec. 3.  This property enables a parameterization of the log-

normal parameters solely in terms of ε .  Calculations were carried out for the moments

over the range of barrier height from 5-20 (56 900≤ ≤ε )using the matrix method (Eq.

B.4).  From the moments we obtained s2  and m from Eqs. B.7  and the fits:

m( ) . . . . lnε ε ε ε= − + +






5 80882 0 0583523 0 000451818 0 296341
2

3
 (B.8a)

s2 0 968544 0 0281779 0 000219704 0 504727
2

3
( ) . . . . lnε ε ε ε= + − −







 . (B.8b)

The transient rate behavior is given by Eq. B.2, with the log-normal approximation to

P(t), as the cumulative distribution:

J t

J
erfc

t m

sSS

(˜) ln(˜)≈ − −







1

1
2 2 2

(B.9)

where erfc is the complementary error function.  Values for m and s2  are obtained for a

specified, in-range value of ε  from Eqs. B.8.  Equation B.9 was used to obtain the

normalized transient rate curves of Fig. 7, which are in very good agreement with the

results of the full matrix eigenvalue calculation.



Figure captions:

1. Schematic depiction of droplet evaporation and growth process in a turbulent.

Droplet growth (represented by the downward arrows) occurs at times when the local

saturation ratio, S,  exceeds unity.  When S is less than unity evaporation of the

droplet occurs.  Such fluctuations in S can result in Brownian-like fluctuations in

droplet size.

2. Top.  Kinetic potential barrier profiles from Eq. 2.10b for several different barrier

heights.  Droplet size is given in reduced units where vc  is the critical droplet volume.

Bottom.  Schematic depiction of fluxes for condensation (middle row of arrows),

evaporation (lower row of arrows) and collection (upper row of arrows).  The forward

and reverse fluxes are balanced at the critical droplet size.  Drizzle formation requires

barrier crossing which can only occur due to fluctuations in droplet size.

3. Monte-Carlo simulation of Brownian fluctuations in the radius of a specified droplet

for  t 1% =0.1s, L=0.5cm3/m3, ND=100.  (a) pre-collection regime, initial droplet radius

= 10µm; (b) collection regime, initial droplet radius = 40µm.  The deterministic

(fluctuations averaged out) growth curve in the collection regime is from Eq. A.10.

4. Steady state barrier transmission rate (cm-3s-1).  Results are for cloud liquid water

contents of L=0.5 gm-3 (lower curves) and L=1.0 gm-3 (upper curves).  In each set of

curves for fixed L, the values of t1% , increasing from left to right, are 0.1, 1.0, and

10s.  The dashed curves are from Eq. 3.9.  The corresponding solid curves give the

exact results from numerical integration of Eq. 3.6.



5 (a) Universal curves for the steady-state barrier crossing rate in dimensionless

coordinates (ε, ω ) defined in terms of cloud properties by Eq. 3.11.  Dashed curve is

the analytic result from Eq. 3.12, solid curve is the exact result from numerical

integration of Eq. 3.6.  (b) Barrier height vs ε .

6. Contours of constant steady state barrier crossing rate, JSS cm s− −3 1.  Solid curves

bottom to top: {Log       10 6 5 4 3 2 5 2 1 5JSS = − − − − − − −, , , , . , , . }.  Results are from

numerical integration of Eq. 3.6.  Dashed lines, contours of constant mean droplet

radius in microns, values bottom to top: { r = 5, 10, 15, 20, 30µm}. Thick line,

separation boundary between the kinetic and activated cloud regimes {ε = (3/2)4}.

Results are for t s1 0 1% .= .  The close contour spacing in the activated regime is

indicative of threshold behavior.

7. Transient drizzle rate.  Barrier crossing rate divided by the steady-state rate versus the

logarithm of the reduced time. Solid curves: full matrix-eigenvalue calculation from

Eq. 4.21.  Dashed curves: lognormal parameterization of Eqs. B.8 and B.9.

8. Contours of constant transient drizzle formation rate, J t( ) cm s− −3 1 for several drizzle

waiting times (t) defined as the time since collection is turned on (t =0) .  Solid

curves: Log10 6J t( ) = − ; top to bottom: t = 600s, 1200s, 3600s, infinity = steady state.

Dashed curves: Log10 5J t( ) = − ; top to bottom: t = 600s, 1200s, 3600s, infinity =

steady state.   Contours calculated using the parameterization Eqs B.8 and B.9 with

Eq. 3.12 for the steady-state drizzle rate.  Thick line, separation boundary between the

kinetic and activated cloud regimes {ε = (3/2)4}.  Results are for t s1 0 1% .= .



9. Collection time.  Time required for a post-critical drizzle embryo (of volume

v vc= 3  where vc  is the critical droplet volume) to reach 50µm radius in size.

Contours right to left { , , , }    t50 500 1000 1500 2000=  from Eq. A. 11.  Results are for

t s1 0 1% .= .  This added to the drizzle formation (waiting) times from Fig. 8 gives the

total time required to form a corresponding flux of 50µm radius drops. Thick line,

separation boundary between the kinetic and activate cloud regimes {ε = (3/2)4}.

Results are for t s1 0 1% .= .
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